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Abstract. Continental water mass change affects ocean mass change (OMC). Assessing the net contribution, however, 10 

remains a challenge. We present an integrated version of the WaterGAP global hydrological model that is able to simulate 

total continental water storage anomalies (TWSA) over the global continental area (except Greenland and Antarctica) 

consistently by integrating the output from the global glacier model of Marzeion et al. (2012) as an input to WaterGAP. 

Monthly time series of global mean TWSA obtained with an ensemble of four variants of the integrated model, 

corresponding to different precipitation input and irrigation water use assumptions, were validated against an ensemble of 15 

four TWSA solutions based on GRACE satellite gravimetry over January 2003 to August 2016. The overall fit to GRACE, 

measured by the Nash–Sutcliffe efficiency (NSE) coefficient, was found to be 0.87. By decomposing the original TWSA 

signal into its seasonal, linear trend and inter-annual components, we find that the seasonal amplitude and phase are very 

well reproduced (NSE = 0.88), the linear trend is overestimated by 30–50% (NSE = 0.65) and inter-annual variability is 

captured to a certain extent (NSE = 0.57) by the integrated model. During the period 1948–2016, we find that continents lost 20 

34–41 mm of sea level equivalent (SLE) to the oceans, with global glacier mass loss accounting for 81% of the cumulated 

mass loss and glacier-free land water storage anomalies (LWSA) accounting for the remaining 19%. Over 1948–2016, the 

mass gain on land from impoundment of water in man-made reservoirs, equivalent to 8 mm SLE, was offset by the mass loss 

from water abstractions, amounting to 15–21 mm SLE and reflecting a cumulated groundwater depletion of 13–19 mm SLE. 

Climate-driven LWSA are highly sensitive to precipitation input and correlate with El Niño Southern Oscillation multi-year 25 

modulations. Significant uncertainty remains in trends of modelled LWSA, which are highly sensitive to simulation of 

irrigation water use and man-made reservoirs. 

1. Introduction 

Global mean sea-level rise (SLR) in recent decades is mainly caused by anthropogenic climate change (Slangen et al., 2016), 

but is also affected by direct human interventions such as impoundment of water in man-made reservoirs and water 30 

abstractions (Church et al., 2013; Oppenheimer et al., 2019). Since the beginning of the altimetry era, several satellite 

missions have produced continuous measurements of sea-level height to monitor its evolution. These records have given rise 
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to multiple studies on global mean sea-level change and its different components (Gregory et al., 2013; Cazenave et al., 

2014; Dieng et al., 2017). It is well-known that sea-level change can be decomposed into a steric component (i.e. thermal 

expansion and salinity change) and a mass component (i.e. change of ocean mass). The Gravity Recovery and Climate 35 

Experiment (GRACE) joint mission of the National Aeronautics and Space Administration (NASA) and the German 

Aerospace Center has enabled, for the first time in history, the monitoring of spatially and temporally distributed ocean mass 

change (OMC). The GRACE twin satellites have produced records of the Earth's gravity field anomalies extending from 

April 2002 to August 2016. Time series of OMC can be derived from the gravity field observations, upon applying several 

post-processing corrections to the raw data, e.g. regarding glacial isostatic adjustment and leakage from the continental mass 40 

signal. 

According to the principle of water mass conservation in the Earth system, OMC can be decomposed into temporal changes 

in mass of 1) Greenland and Antarctica ice sheets, 2) glaciers, 3) water stored on the continents and 4) atmospheric water 

vapour. If the water mass in these four compartments decreases, ocean mass increases. Hereafter, we refer to water mass 

changes of glaciers (different from ice sheet peripheral glaciers) as land glacier water storage anomaly (LGWSA) and the 45 

water mass changes on glacier-free land as land water storage anomaly (LWSA). LWSA is defined as all water stored in 

rivers, lakes, wetlands, man-made reservoirs, snow pack, canopy, soil and aquifers, excluding glaciers (Church et al., 2013; 

Scanlon et al., 2018). The term anomaly is used to express that the absolute mass of water in glaciers and on glacier-free land 

is not known and also not relevant for determining the contribution of these mass changes to OMC. The sum of LGWSA and 

LWSA is equal to the total continental water storage anomaly (TWSA). It can be assumed that the majority of any mass 50 

decrease in TWSA leads to increased mass in the ocean in particular due to the small water storage capacity of the 

atmosphere (Dieng et al., 2015; Cazenave, 2018). TWSA and thus global water mass transfers from continents to oceans can 

be derived either from estimates of its two components or from GRACE observations over the continents.  

LGWSA constitutes a major contribution to OMC. There are several global glacier models capable of simulating LGWSA at 

global scale (Hirabayashi et al., 2013; Marzeion et al., 2012; Huss and Hock, 2015). Using such a model, Marzeion et al. 55 

(2015) estimated a global glacier mass loss corresponding to 63.2 ± 7.9 mm SLE between 1902 and 2005. Projections for the 

twenty-first century show that mass loss of glaciers will continue to be a significant contribution to OMC and thus SLR 

(Slangen et al., 2017; Hock et al., 2019). The contribution of LWSA to OMC remains highly uncertain (Cazenave, 2018). 

LWSA is not only driven by climate variability and change but also human activities; LWSA is thus the sum of climate-

driven LWSA (LWSAclim) and human-driven LWSA (LWSAhum). 60 

Different approaches have been employed to estimate LWSA. Dieng et al. (2015) used a global ocean mass budget approach 

to quantify LWSA over 2003–2013; they compared GRACE-based OMC to the sum of mass components derived from 

independent products, except for LWSA, which was the unknown quantity to be estimated. In other studies, this component 

was extracted from GRACE-derived TWSA (Reager et al., 2016; Rietbroek et al., 2016). Another approach to estimate 

LWSA is the use of global hydrological and land surface models (GHMs). GHMs are driven by time series of spatially 65 
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distributed climate variables such as precipitation and temperature that are usually derived from atmospheric reanalysis. 

They simulate water flows and water storages on continents, distinguishing water storage anomalies in individual water 

storage compartments. For example, the WaterGAP GHM simulates anomalies in snow, canopy, soil, groundwater and 

surface water bodies (SWB) including rivers, lakes, man-made reservoirs and wetlands (Döll et al., 2014). Furthermore, 

some GHMs like WaterGAP and PCR-GLOBWB (Sutanudjaja et al., 2018) explicitly simulate the impact of human water 70 

use and of impoundment of water in man-made reservoirs on LWSA. Wada et al. (2017) assessed components of LWSA 

based on 1) modelling groundwater depletion with PCR-GLOBWB, 2) estimating impoundment behind dams by adding 

storage capacities of reservoirs, 3) assuming the LWSAclim estimate of Reager et al. (2016) and 4) very roughly estimating 

storage losses in endorheic lakes (Caspian Sea and Aral Sea), wetlands and due to deforestation based on literature. Most 

GHMs do not simulate the effect of glacier mass change on hydrological flows and storages; areas that in reality are covered 75 

by glaciers (hereafter glacierized areas) are treated as normal (i.e. non-glacierized) areas. However, some exceptions exist; 

for instance, the Community Land Model version 5.0 (CLM5) includes a dynamic fractional glacier area and simulates 

surface mass balance (SMB) of glaciers all over the world (Lawrence et al., 2019). 

In the last decades, many studies have compared water storage anomalies derived from GHMs and GRACE at different 

temporal and spatial scales (Di Long et al., 2017; Scanlon et al., 2018; Scanlon et al., 2019). However, the globally averaged 80 

water storage anomaly on the continents simulated by GHMs, which is the relevant variable for the assessment of global 

mean SLR, has not yet been compared to GRACE observations. While comparison of GRACE TWSA to GHM LWSA (i.e. 

total water storage estimated without considering glaciers) is consistent for regions without significant glaciers, this is not the 

case for analyses of globally averaged continental water mass changes, in particular because the TWSA trend is strongly 

impacted by LGWSA. In OMC assessments, the common practice is to add the trends of the two independently estimated 85 

components LWSA and LGWSA (Gregory et al., 2013; Dieng et al., 2017; Cazenave, 2018). This, however, has the inherent 

problem of double-counting mass changes in glacierized areas, which are accounted for by both glacier mass loss estimates 

and GHMs (as non-glacierized areas). It has not yet been assessed whether this double-counting is significant at the global 

scale. In addition, glacier mass variability affects the water flow dynamics on the continents as well as the seasonality of 

water transfers from the continents to the oceans. This can only be taken into account by integrating glacier dynamics into 90 

GHMs. 

One of the advantages of global models over GRACE observations for estimating global water mass transfers from 

continents to oceans is that models are not limited to the GRACE observational period, but can provide estimates for longer 

time periods. Furthermore, in the case of GHMs, another advantage is the possibility to disaggregate LWSA into the 

contributions of its individual components. On the downside, global models are subject to many sources of uncertainty (e.g. 95 

input data, calibration approach, parameterization, model structure) and their global-scale validation is difficult mainly due 

to a lack of observations of e.g. streamflow, groundwater level or soil moisture. In this respect, satellite observations with 

global coverage like GRACE are of considerable interest for the hydrological community. Because of the spatial resolution 
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of GRACE (~300–500 km), it is known that the derived TWSA should not be used to validate models at smaller spatial 

scales. However, considering that the quality of GRACE estimates increases with decreasing resolution (i.e. larger areas), 100 

they can be of great use to constrain and improve global and regional hydrological models, as proved by many studies 

(Güntner, 2008; Tangdamrongsub et al., 2018; Werth and Güntner, 2010). 

We did a long-term (1948–2016) assessment of TWSA and thus the contribution of water transfers from continents (except 

Antarctica and Greenland) to OMC. Our assessment aimed at quantifying this contribution during the period 1948–2016, as 

well as identifying its main drivers and components. In a first instance, we disaggregated TWSA into the contributions of 105 

LGWSA, LWSAclim and LWSAhum. We further disaggregated LWSAhum by quantifying separately the effect of water 

impoundment in reservoirs (LWSAres) and the effect of water abstraction (LWSAabs). TWSA estimates were obtained by 

combining two state-of-the-art global models; the global glacier model GGM of Marzeion et al. (2012) and the GHM 

WaterGAP (Döll et al., 2003; Müller Schmied et al., 2014; Müller Schmied et al., 2016). In its standard version, WaterGAP 

does not take into account glaciers. To avoid the double-counting of glacierized areas, we integrated 0.5° gridded monthly 110 

time series of LGWSA simulated by GGM as an input to WaterGAP. This resulted in a non-standard version of WaterGAP 

which implicitly includes glaciers, hereafter referred to as integrated WaterGAP. The model was run with two different 

precipitation forcings and two different assumptions regarding irrigation water use, resulting in an ensemble of four 

solutions. We regarded the spread of these four time series around the ensemble mean as an informal indication of 

uncertainty. We validated the ensemble by comparing it to an ensemble of four GRACE spherical harmonics (SH) solutions. 115 

In the following section, we briefly describe the models and data sets used in this study. The methods employed in this study 

are described in Section 3. In Sections 4 and 5, we present the results of our model evaluation and of our assessment of 

global TWSA over the period 1948 to 2016, respectively. The results are discussed in Section 6. Finally, we present our 

conclusions in Section 7. 

2. Models and data 120 

2.1 Global hydrological model 

2.1.1 General structure 

We used the latest version of the GHM WaterGAP, WaterGAP2.2d. WaterGAP simulates both human water use as well as 

daily water flows and water storages (or anomalies) on a 0.5° by 0.5° grid (55 km by 55 km at equator and ~3000 km
2
 grid 

cell) covering the global continental area except for Antarctica (see Fig. 1 in Döll et al., 2014). We ignored model outputs 125 

over the grid cells corresponding to Greenland because this study focuses on anomalies over continental area different from 

the ice sheets. Streamflow is laterally routed through the stream network derived from the global drainage direction map 

DDM30 (Döll and Lehner, 2002) until it reaches the ocean or an inland sink. The model is calibrated against observations of 

mean annual streamflow at 1319 gauging stations (Müller Schmied et al., 2014). 
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The model requires daily climatological input data sets of precipitation (rainfall and snowfall), near-surface air temperature 130 

and long- and short-wave downwards surface radiation. In the frame of this study, we used an homogenized climate forcing 

resulting from the combination of WATCH Forcing Data based on ERA-40 reanalysis (WFD, Weedon et al., 2011) for the 

period 1948–1978 and WFD methodology applied to ERA-Interim reanalysis (WFDEI, Weedon et al., 2014) for the period 

1979–2016 (Müller Schmied et al., 2016). Hereafter, we refer to this homogenized climate forcing simply as WFDEI. 

Monthly sums of precipitation are bias corrected by monthly precipitation data sets derived from raingage observations of 135 

either GPCC v5/v6 (Global Precipitation Climatology Centre, Schneider et al., 2015) or CRU TS3.10/TS3.21 (Climate 

Research Unit, Harris et al., 2014). Note that the GPCC and CRU products used to scale monthly precipitation sums within 

WFDEI use the available number of gauging stations for each month. The variability in the number of precipitation 

observations over time makes the resulting precipitation data sets less suitable for trend analysis (Müller Schmied et al., 

2016). We forced WaterGAP with both WFDEI with monthly precipitation sums based on GPCC (hereafter WFDEI-GPCC) 140 

and based on CRU (hereafter WFDEI-CRU) in order to account for part of the uncertainty in model output due to 

precipitation input data. 

WaterGAP was developed with the aim of assessing global water availability. Thus, one of its key features is the 

representation of human impacts on water resources. Concretely, the model accounts for the impact of water impoundment 

in reservoirs and of human water use on water flows and storages. LWSAhum is then calculated following Eq. (1): 145 

𝐿𝑊𝑆𝐴ℎ𝑢𝑚 = 𝐿𝑊𝑆𝐴𝑟𝑒𝑠 + 𝐿𝑊𝑆𝐴𝑎𝑏𝑠 ,         (1) 

where LWSAres is the anomaly due to impoundment of water in reservoirs and LWSAabs is the anomaly due to water 

abstraction. Reservoir data (location, type, surface area, first operational year and storage capacity) used by the model comes 

from a preliminary version of the Global Reservoir and Dam (GRanD) data base which includes 6862 reservoirs with a total 

storage capacity of 6197 km³ (Lehner et al., 2011). The simulation of reservoir operation is based on the generic algorithm of 150 

Hanasaki et al. (2006), which distinguishes between irrigation and non-irrigation reservoirs. A slightly modified version of 

the algorithm (Döll et al., 2009) is implemented in WaterGAP. The model distinguishes between man-made reservoirs and 

regulated lakes (i.e. natural lakes whose outflows are regulated by a dam). Reservoirs (man-made reservois plus regulated 

lakes) are classified as “local” or “global” (the same distinction exists for wetlands and lakes). Local reservoirs are located 

only within one grid cell and thus are fed only by runoff produced within that cell. Different from local reservoirs, global 155 

reservoirs are spread within more than one cell and are also fed by streamflow from the upstream cell. In addition, global 

reservoirs are defined by their size, exceeding a surface area of 100 km² or having a maximum storage capacity of at least 0.5 

km³. Local lakes and local reservoirs within one cell are lumped into one local lake. This can be explained by the fact that 

lumping multiple local reservoirs within one cell into one local reservoir inevitably erases the specific characteristics of each 

reservoir; the resulting lumped local reservoir is then not expected to be better simulated by the reservoir algorithm then by 160 

the lake algorithm (Döll et al., 2009). Taking this into account, 1082 global reservoirs and 85 global regulated lakes, which 

together represent a total storage capacity of 5764 km³ (~16 mm SLE), are simulated by WaterGAP using the reservoir 
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operation algorithm. The reservoir filling phase upon construction is simulated based on the first operational year and the 

storage capacity. The monthly release flow of irrigation reservoirs varies according to the downstream consumptive water 

use (i.e. part of water abstractions that evapotranspires during use). For non-irrigation reservoirs, it is assumed that the 165 

monthly release flow remains unchanged throughout the year. 

Concerning human water use, in a first instance, time series of water abstraction and consumptive water use are generated 

for five water use sectors (irrigation, livestock farming, domestic use, manufacturing industries and cooling of thermal power 

plants) by separate global water use models. The calculation of irrigation water use takes into account climate variability as 

well as yearly country estimates of irrigated area (Döll et al., 2012). The outputs of the water use models are then translated 170 

into net abstraction (i.e. total abstraction minus return flow) by the sub-model GWSWUSE, which distinguishes the source 

of abstracted water (surface water or groundwater). The net abstraction time series are then subtracted from the surface water 

and groundwater storage compartments of WaterGAP, respectively (Müller Schmied et al., 2014; Döll et al., 2014).  

2.1.2 Computation of LWSA 

WaterGAP represents the transport of water on continents as flows among a series of individual water storage compartments  175 

(see Figure 1 in Döll et al., 2014). It includes all continental water storage compartments except for glaciers. Thus, 

glacierized areas are treated as non-glacierized areas. LWSA, which integrates the changes in all the compartments, is 

calculated following Eq. (2): 

𝐿𝑊𝑆𝐴 = 𝑆𝑛𝑊𝑆𝐴 + 𝐶𝑛𝑊𝑆𝐴 + 𝑆𝑀𝑊𝑆𝐴 + 𝐺𝑊𝑆𝐴 +  𝐿𝑎𝑊𝑆𝐴 + 𝑅𝑒𝑊𝑆𝐴 +  𝑊𝑒𝑊𝑆𝐴 + 𝑅𝑖𝑊𝑆𝐴 ,   (2) 

where WSA is water storage anomaly in snow (Sn), canopy (Cn), soil moisture (SM), groundwater (G), lake (La), reservoir 180 

(Re), wetland (We) and river (Ri) storages. 

2.2 Global glacier model 

2.2.1 General structure 

We used the global glacier model GGM of Marzeion et al. (2012). The model computes mass changes of individual glaciers 

for the whole globe. It combines a glacier SMB model, following an empirically based temperature–index approach, with a 185 

model that accounts for the response of glacier geometry (in the model defined by area, length and elevation range) to 

changes in glacier mass. The dynamic simulation of this response follows an area–volume–time scaling approach, based on 

the equation of Bahr et al. (1997), enabling the model to account for various feedbacks between glacier geometry and mass 

balance. The model is calibrated by fitting simulated glacier SMB to observed glacier SMB from the collections of the 

World Glacier Monitoring Service (2016). The error in modelled annual glacier mass change is determined using a cross-190 

validation routine applied to glaciers with observed mass balances. 

GGM is forced by global time series of near-surface air temperature and precipitation fluxes from various sources (Section 

2.2.2). As initial conditions, it also requires information on glacier area and minimum and maximum elevation, which are 
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taken from the Randolph Glacier Inventory (RGI) version 6.0 (updated from Pfeffer et al., 2014). GGM includes both local 

(i.e. glacier-specific) and global parameters. Local parameters are calibrated and cross-validated following the procedure 195 

described in Marzeion et al. (2012). Global parameters are optimized following a multi-objective optimization routine, 

maximizing temporal correlation of model results and observations, and minimizing the model bias as well as the difference 

of the variance of modelled and observed mass balances. 

2.2.2 Computation of LGWSA 

GGM computes glacier mass change at the scale of individual glaciers worldwide. In the framework of this study, the data 200 

were provided on a rectangular 0.5° by 0.5° grid (for consistency with WaterGAP spatial resolution) covering the entire 

globe (excluding the peripheral glaciers of Greenland and Antarctica) at monthly scale for the period extending from January 

1948 to December 2016. Gridded annual time series of glacier area computed with GGM, as well as monthly time series of 

total (liquid plus solid) precipitation on glacier area from the atmospheric forcing were also used in this study. Glacier area 

data was required to adapt the land area fraction within WaterGAP cells. In addition, precipitation on glacier area was 205 

required to calculate glacier runoff (see Section 3.3 for more details). Note that, to produce the gridded GGM data sets, each 

glacier was assigned to the grid cell that contains its center point (as given in the RGI version 6.0) even if, in reality, the 

glacier stretches across several grid cells. The data sets used in this study correspond to a simulation in which GGM was 

forced by the mean of an ensemble of seven global gridded atmospheric data sets (New et al., 2000; Saha et al., 2010; 

Compo et al., 2011; Dee et al., 2011; Kobayashi et al., 2015; Poli et al., 2016; Gelaro et al., 2017). Note that choosing the 210 

ensemble mean over any of the individual atmospheric data sets allows reducing the uncertainty due to input climate forcing 

data. 

2.3 GRACE-derived TWSA 

Global time series of GRACE mass change over the continents were derived from ITSG-Grace2018 (Mayer-Gürr et al., 

2018) and GRACE Release 6 (CSR, GFZ, JPL) quasi-monthly Level-2 gravity field solutions by means of global spherical 215 

harmonic (SH) coefficients. We further processed the SH solutions in order to derive global grids of surface mass change, as 

described below. 

SH unconstrained monthly solutions expanded up to degree and order 60 were chosen for the lower noise level (compared to 

higher resolved solutions). We substituted Degree-1 (geocenter motion) coefficients following the approaches of Swenson et 

al. (2008) and Bergmann-Wolf et al. (2014), and C2,0 (Earth’s oblateness) coefficients after Cheng et al. (2013) for the 220 

coefficients in the GRACE products, respectively. Mass redistribution related to glacial isostatic adjustment (GIA) was 

accounted for via the GIA modelling results from Caron et al. (2018). Furthermore, we excluded areas with considerable 

mass redistribution related to the 2004/2005 Sumatra/Nias- and the 2011 Tōhoku earthquakes from the integration. We 

corrected for the leakage effect from continent to ocean, observed in coastal regions, by expanding the initial land–water 

mask by a 300 km buffer onto the ocean. The gravity field over this buffer area contains signal from both land and ocean. In 225 
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order to counteract this superposition, we subtracted the monthly mean value of the buffered Global Ocean surface-density 

change (obtained from the corresponding SH solution) multiplied by the fractional ocean area of the buffer cells, 

respectively. Here, we assume the actual mean OMC over the buffer to equal the global mean OMC. 

The resulting integrated and corrected signal was then attributed to the initial land–water mask (i.e. the one used by 

WaterGAP) area and represents the global continental mass change from hydrology and glaciers (since it is impossible for 230 

GRACE to make the distinction), excluding Antarctica and Greenland. Note that mass changes are given relative to an 

arbitrary reference state; here we use the temporal mean state over the period January 2006 to December 2015. All four 

solutions (i.e. based on ITSG-Grace2018 and CSR, GFZ and JPL Release 6 products) cover the period from January 2003 to 

August 2016, with some months with missing data in between. 

The GRACE trend uncertainty is a 1σ standard uncertainty and was assessed from several components in the time series 235 

processing that have a significant impact on the trend. It comprises uncertainty due to leakage corrections, low-degree 

replacements for GRACE (Earth flattening and geocenter motion) and GIA. The given combined trend uncertainty, which is 

identical for all GRACE time series, is the root sum squared of these contributing parts. 

3. Methods 

3.1 Evaluation of GGM glacier mass change with in situ observations 240 

Marzeion et al. (2012) compared in situ observations of glacier annual SMB (from the collections of the World Glacier 

Monitoring Service) to estimates obtained with GGM. The results showed a good correlation (r = 0.60 for set of 3997 pairs 

of annual modelled and measured SMB) and from this it is concluded that GGM can reconstruct annual mass balances of 

unmeasured glaciers with reasonable accuracy. In this study, which focuses not only on the annual but also on the monthly 

scale, we investigated the performance of GGM at seasonal scale. By “seasonal”, we refer to the winter and summer seasons 245 

within a glacier mass balance year. During the winter (accumulation) season (October to March in the Northern hemisphere 

and April to September in the Southern hemisphere), the glacier tends to gain mass, while during the summer (melting) 

season (April to September in the Northern hemisphere and October to March in the Southern hemisphere), the glacier tends 

to lose mass. For the comparison, we used the estimates computed by GGM at the scale of individual glaciers. The 

observational data was selected from the “reference glaciers” sample of the World Glacier Monitoring Service (2017). This 250 

constitutes a reliable and well-documented sample of globally distributed long-term observation series. A glacier was 

selected from this sample if 1) its observations corresponded to the entire glacier and not solely to sections of it, 2) it had a 

minimum of five years with observations for both summer and winter and 3) it was among the glaciers simulated by GGM. 

In total, 31 glaciers worldwide were selected (see Table S1 in the supplementary material). 

3.2 Pre-processing of gridded GGM output data 255 

We applied a number of pre-processing steps to the GGM gridded data in order to make it suitable as input data for 

WaterGAP. For all three data sets (temporally accumulated glacier mass change, glacier area and precipitation on glacier 
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area), the grid cells containing one or more glaciers (hereafter “glacierized” cells) were assigned to the corresponding cells of 

the WaterGAP grid based on geographical location. As a consequence, 49 GGM glacierized cells were excluded from the 

analysis as they were outside the WaterGAP grid boundaries (see Figure S1 in the supplementary material). Note that the 260 

accumulated global glacier mass change over 1948–2016 from the original data set (i.e. including all glacierized cells) 

amounts to 5730.63 Gt; after the exclusion of the 49 cells, it amounts to 5715.81 Gt. Hence, we consider that the effect of 

excluding these cells is negligible. Furthermore, the accumulated glacier mass change time series were disaggregated from 

monthly to daily because WaterGAP runs internally at daily time steps. At the scale of one month, the temporal 

disaggregation was done by assigning the accumulated monthly value to the last day of the month and subsequently 265 

replacing the missing values (rest of the days in the month) by simple linear interpolation. Note that the first day of the 

simulation period was assigned the value 0. The next step consisted in deriving the rate of daily glacier mass change from the 

accumulated daily values. Time series of precipitation on glacier area were also disaggregated from monthly to daily; at the 

scale of one month, this was done by simply dividing the monthly precipitation by the number of days in the month and 

assigning the resulting precipitation to each day of the month. 270 

3.3 Integration of GGM glacier data into WaterGAP 

Each WaterGAP grid cell has a continental area (AC), the part of the grid cell that is not ocean. The continental area consists 

of spatially and temporally varying fractions of land area (AL) (where precipitation infiltrates into the soil) and areas of SWB 

if there are lakes, wetlands and/or reservoirs. If a fraction of AL is actually covered by glacier according to GGM, then the 

simulation of hydrological processes (evapotranspiration, runoff generation, groundwater recharge etc.) needs to be 275 

restricted, in the integrated WaterGAP version, to the glacier-free portion of the land area. In the gridded glacier area (ALG) 

data set, the entire area of each glacier is assigned to the cell where the center of the glacier is located. However, in reality, 

some glaciers are spread over more than one cell; this means that sometimes input ALG is larger than AC. In such cases, ALG 

is set to be equal to AC, in order to avoid inconsistencies. As a result of this adaptation, we systematically neglect 10 to 11% 

(depending on the year) of the global ALG over the period 1948–2016 (but not the pertaining LGWSA). The adapted ALG is 280 

then used to adjust AL (Figure 1). In the initial year of the simulation (yr = 1), AL (which is equal to the initial AL of the 

standard WaterGAP) is reduced by ALG. In the following years, AL is adapted by the glacier area change (ΔALG), which can 

be either positive (area increase) or negative (area decrease). Areas of SWB are not adapted according to ALG. Glacier mass 

change (dLGWS/dt) computed by GGM is added, along with changes in the other storage compartments, to TWS change 

(Figure 1). We assume that the only ongoing hydrological process on ALG is runoff generation from precipitation on the 285 

glacier (PLG) and the LGWS change (dLGWS/dt), hereafter called glacier runoff (RLG) and calculated according to Eq. (3):  

𝑅𝐿𝐺 =  𝑃𝐿𝐺 − 𝑑𝐿𝐺𝑊𝑆/𝑑𝑡           (3) 

If daily increase in glacier mass is larger than daily PLG, RLG is assumed to be equal to zero. RLG is added to the cell’s fast 

runoff, which partly flows directly into the river storage and partly into the lake, wetland and reservoir storages (Figure 1). It 
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is assumed that RLG does not recharge the soil and groundwater storages. The thus enhanced WaterGAP, the “integrated” 290 

WaterGAP, is capable of actually simulating TWSA on the continents (as observable by GRACE), while the standard 

WaterGAP neglects the impact of glaciers on TWSA. 

 

Figure 1: Schematic of integration of glacier data from GGM into WaterGAP at grid cell scale. Glacier-related data sets are represented 

by orange boxes. Blue boxes represent water storage compartments in WaterGAP. Full arrows represent water flows and dotted arrows 295 

indicate that the sum of changes in individual storages equals TWS change. See text for details and abbreviations. 

3.4 Overview of WaterGAP variants 

In order to generate the monthly and annual TWSA time series used in this study, two model versions, standard WaterGAP 

(Wg_std) and integrated WaterGAP (Wg_gl), were run under four different model configurations or modes (Table 1). In 

anthropogenic mode (standard mode), the model takes into account both climate variability and anthropogenic variability, 300 

the latter referring to the effects of water impoundment in reservoirs and of human water abstraction. In naturalized mode, 

the model takes into account only climate variability; this means that reservoirs are not simulated at all (except for regulated 

lakes, which are treated as natural lakes) and water abstraction is neglected. By comparing outputs from anthropogenic and 

naturalized runs, it is possible to isolate the water storage change solely due to the human activities (Table 2). WaterGAP 

also allows performing runs that neglect reservoirs but take into account water abstraction, and vice-versa; these model 305 

variants are interesting for the purpose of isolating the effect of water impoundment in reservoirs from the effect of water 

abstraction (Table 2). Each combination of model version and model configuration was run under two climate forcings, 

WFDEI-GPCC and WFDEI-CRU.  

 

 310 
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Table 1: Overview of model variants used in this study. The standard version of WaterGAP2.2d (Wg_std) and a non-standard version 

which implicitly includes glaciers (Wg_gl) were run under four types of model configuration (“anthropogenic”, “anthropogenic without 

reservoirs”, “anthropogenic without water abstraction” and “naturalized”), two climate forcings differing in terms of precipitation bias 

correction (based on GPCC or CRU), and two assumptions related to consumptive irrigation water use (“70% deficit” and “optimal”). 315 

 

Model version Model 

configuration 

Precipitation 

bias 

correction 

Consumptive 

irrigation water 

use 

Model variant name 

Standard 

WaterGAP 

(Wg_std) 

Anthropogenic GPCC1 70% deficit  Wg_std_ant_GPCC_irr70 

optimal Wg_std_ant_GPCC_irr100 

Anthropogenic CRU2 70% deficit  Wg_std_ant_CRU_irr70 

optimal Wg_std_ant_CRU_irr100 

Integrated 

WaterGAP  

(Wg_gl) 

Anthropogenic GPCC1 70% deficit  Wg_gl_ant_GPCC_irr70 

optimal Wg_gl_ant_GPCC_irr100 

Anthropogenic 

without 

reservoirs  

GPCC1 70% deficit  Wg_gl_ant_nores_GPCC_irr70 

optimal Wg_gl_ant_nores_GPCC_irr100 

Anthropogenic 

without water 

abstraction 

GPCC1  Wg_gl_ant_noabs_GPCC 

Naturalized GPCC1  Wg_gl_nat_GPCC 

Anthropogenic CRU2 70% deficit  Wg_gl_ant_CRU_irr70 

optimal Wg_gl_ant_CRU_irr100 

Anthropogenic 

without 

reservoirs 

CRU2 70% deficit  Wg_gl_ant_nores_CRU_irr70 

optimal Wg_gl_ant_nores_CRU_irr100 

Anthropogenic 

without water 

abstraction 

CRU2  Wg_gl_ant_noabs_CRU 

Naturalized CRU2  Wg_gl_nat_CRU 

1 Schneider et al. (2015). ² Harris et al. (2014). 

In addition, inspired by the study of Döll et al. (2014), we considered two different assumptions with respect to consumptive 

irrigation water use in the design of the variants. Consumptive irrigation water use is normally computed under the 

assumption that crops receive enough irrigation water to allow actual evapotranspiration to become equal to the potential 320 

evapotranspiration value (Döll et al., 2016). However, in reality, this is not always the case, especially in regions affected by 

groundwater depletion (GWD), where farmers may use less water due to water scarcity. GWD is defined as a long-term 

decline of hydraulic heads and groundwater storage. Using a former version of WaterGAP, Döll et al. (2014) identified 

GWD areas worldwide by selecting the grid cells characterized by 1) an average GWD of at least 5 mm yr
-1

 over the period 

1980–2009 and 2) an irrigation water abstraction volume of at least 5% of total water abstraction volume. In this study, we 325 

applied two different assumptions in relation to consumptive irrigation water use in the GWD areas identified by Döll et al. 
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(2014). We either assumed that consumptive irrigation water use is optimal (i.e. that it corresponds to 100% of water 

requirement) or that it is equal to 70% of optimal (Table 1). Hereafter, we refer to these two assumptions as “optimal 

irrigation” and “70% deficit irrigation”, respectively.  

Table 2: Overview of how the TWSA mass budget components were calculated using the integrated WaterGAP variants. TWSA[ant], 330 

TWSA[nat], TWSA[ant_nores] and TWSA[ant_noabs] were computed under the ‘anthropogenic’, ‘naturalized’, ‘anthropogenic without 

reservoirs’ and ‘anthropogenic without water abstraction’ configurations, respectively. Land glacier water storage anomalies (LGWSA) 

remain unchanged throughout the configurations. 

Component Computation Model configuration(s) used 

LWSA TWSA[ant] – LGWSA ‘Anthropogenic’ 

LWSAclim TWSA[nat] – LGWSA ‘Naturalized’ 

LWSAhum TWSA[ant] – TWSA[nat] ‘Anthropogenic’ and ‘naturalized’ 

LWSAres TWSA[ant] – TWSA[ant_nores] ‘Anthropogenic’ and ‘anthropogenic 

without reservoirs’ 

LWSAabs TWSA[ant] – TWSA[ant_noabs] ‘Anthropogenic’ and ‘anthropogenic 

without water abstraction’ 

 

4. Model evaluation 335 

To evaluate the quality of GGM, simulated glacier mass changes of individual glaciers were compared to glacier 

observations. Then, global mean TWSA simulated by WaterGAP with and without integration of GGM output was 

compared to GRACE observations. 

4.1 Comparison of observed and simulated annual and seasonal glacier mass changes 

Comparison of observed average annual glacier mass changes for 31 glaciers with mostly decades of observations (Table S1) 340 

confirm the conclusion of Marzeion et al. (2012) that GGM is able to simulate well annual glacier mass changes. This study 

reveals that both winter accumulation and summer melting is simulated reasonably, too, but worse than the annual mass 

changes, with Nash–Sutcliffe efficiencies NSE (Eq. (1), Nash and Sutcliffe, 1970) and correlation coefficients r being 

slightly lower than for the annual values (Figure 2). We also quantified, for each glacier, the fit between simulated and 

observed time series of winter and summer mass changes (two values per year times the number of years with observations). 345 

Approximately three-quarters of the glaciers have a NSE higher than 0.70 (Table S1), indicating a good model performance 

at the seasonal time scale even though GGM was only tuned with respect to the annual values. Only two glaciers, the 

“Devon Ice Cap NW” and the “Vernagtferner”, show a negative NSE. The first is a marine-terminating ice cap where 

calving processes that are not modelled explicitly by GGM occur. 
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 350 

Figure 2: Correlation between observed and modelled average annual, winter and summer glacier mass change. Observations were taken 

from the collections of the World Glacier Monitoring Service (31 glaciers included). Model results were obtained with the global glacier 

model of Marzeion et al. (2012). Nash–Sutcliffe efficiency (NSE) and correlation coefficient (r) values correspond to average annual (a), 

winter (w) and summer (s) mass changes. Millimetres of water equivalent (mm w.e.) are relative to glacier area. 

4.2 Comparison of observed and simulated global mean TWSA during the period January 2003 to August 2016 355 

Figure 3a presents time series of the ensemble of monthly TWSA simulated by the standard (without glaciers) and the 

integrated (with glaciers) WaterGAP versions compared to GRACE observations. The NSE- and r-values shown in the 

figure were computed for the mean of the GRACE ensemble (consisting of four solutions) and the means of the Wg_std and 

Wg_gl ensembles (each ensemble consisting of the four variants under anthropogenic conditions, see Table 1). For both 

Wg_std and Wg_gl, there is a remarkably good fit between the modelled ensemble mean and the GRACE ensemble mean in 360 

terms of NSE (0.85, 0.87) and r (0.92, 0.95), both of which rather reflect the good fit of seasonal variability than of the trend. 

The fit is slightly better with Wg_gl, not only in terms of ensemble mean but also if we consider the NSE- and r-values 

obtained by comparing each individual GRACE solution to each individual WaterGAP solution (see Figure S2 in the 

supplementary material). With NSE around 0.80 during the period January 2003 to December 2008, the fit is worse during 

the first six evaluation years than during the following period until August 2016 (Figure 3a). Note however that the period 365 

from 2011 onward contains more gaps in the GRACE data. Glaciers lead to a much stronger decreasing TWSA trend over 

the period considered. Monthly time series of LGWSA from GGM have a small seasonal variability and an almost linear 

decreasing trend (Figure 3b). When adding LGWSA to the LWSA computed by Wg_std (Wg_std+GGM), the resulting time 

series of global mean values (purple ensemble in Fig. 3b) is indistinguishable from the TWSA time series computed by 

Wg_gl (green ensemble in Fig. 3a).  370 
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Figure 3: Global mean monthly TWSA from GRACE observations and from different modelling approaches, January 2003 to August 

2016. (a) TWSA from GRACE ensemble, LWSA from standard WaterGAP (Wg_std) in anthropogenic mode ensemble 

(Wg_std_ant_CRU_irr100, Wg_std_ant_CRU_irr70, Wg_std_ant_GPCC_irr100 and Wg_std_ant_GPCC_irr70 in Table 1) and TWSA 

from integrated WaterGAP (Wg_gl) in anthropogenic mode ensemble (Wg_gl_ant_CRU_irr100, Wg_gl_ant_CRU_irr70, 375 

Wg_gl_ant_GPCC_irr100 and Wg_gl_ant_GPCC_irr70 in Table 1). (b) TWSA from GRACE ensemble, LWSA from Wg_std ensemble as 

in (a), LGWSA from GGM and TWSA obtained by adding anomalies from Wg_std ensemble and GGM (Wg_std+GGM). For each 

ensemble, the curve represents the ensemble mean and the shaded area around the curve represents either the uncertainty range (GRACE) 

or the ensemble minimum and maximum values (Wg_std, Wg_gl and Wg_std+GGM). Nash–Sutcliffe efficiency (NSE) and correlation 

coefficient (r) obtained by comparing GRACE and model ensemble means are provided. Anomalies are relative to the mean over the 380 

period January 2006 to December 2015. Millimetres of land water height (mm LWH) are relative to the global continental area without the 

ice sheets (132.3·106 km2). 

To evaluate WaterGAP performance separately regarding its simulation of seasonality, trend and inter-annual variability, the 

original monthly TWSA time series (Figure 3a) were decomposed (based on harmonic analysis) into de-trended (Figures 4a 

and 4b), de-seasonalized (Figures 4c and 4d) and residual (Figures 4e and 4f) TWSA. Regarding seasonality, there is a 385 

remarkably good fit to GRACE with both Wg_std and Wg_gl; the seasonal amplitude and phase are very well reproduced by 

the models, even though for some years (e.g. 2003, 2004, 2011, 2014) there seems to be a slight phase shift of approximately 

one month (Figures 4a and 4b). The indicators show that the fit is very good with the two models and only slightly better for 

Wg_gl, reflecting the small contribution of glaciers to the seasonal variation of global mean TWSA (NSE of 0.89 instead of 

0.88 due to slightly increasing seasonal amplitude). The de-seasonalized time series show the strong impact of including 390 

glaciers into WaterGAP. Wg_gl can follow the decrease of TWSA observed by GRACE much better than Wg_std (Figures 

4c and 4d), and performance indicators are significantly higher (NSE improves from 0.65 to 0.74 and r from 0.85 to 0.93).  
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Figure 4: Temporal components of global mean monthly TWSA from GRACE observations and from two versions of WaterGAP2.2d, 

January 2003 to August 2016. GRACE ensemble, standard WaterGAP (Wg_std) ensemble (a, c, e) and integrated WaterGAP (Wg_gl) 395 

ensemble (b, d, f). (a,b) De-trended anomalies. (c,d) De-seasonalized anomalies (correspond to linear and non-linear long-term variability). 

(e,f) Residual anomalies obtained by removing linear trend and seasonality (correspond to non-linear inter-annual variability). For each 

ensemble, the curve represents the ensemble mean and the shaded area around the curve represents either the uncertainty range (GRACE) 

or the ensemble minimum and maximum values (Wg_std and Wg_gl). Nash–Sutcliffe efficiency (NSE) and correlation coefficient (r) 

obtained by comparing GRACE and model ensemble means are provided. Anomalies are relative to the mean over the period January 400 

2006 to December 2015 and given in millimetres of land water height (mm LWH). 
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However, the GRACE signal is overestimated before 2011(in particular from 2007–2009) and in 2016, and underestimated 

in 2011. The overestimation from 2007–2009 may be partly due to a drought period in the Near East when a large number of 

new groundwater wells were drilled in this region, which is not taken into account in WaterGAP simulations of groundwater 

vs. surface water use (Döll et al., 2014). The residual signal present in the original time series (Figures 4e and 4f), which 405 

includes the inter-annual variability, is very similar for the two models, which suggests that GGM does not contribute to the 

residual. The fit of the residuals and thus simulation of inter-annual variability is relatively good but worse than for de-

trended and de-seasonalized time series. The discrepancies to the GRACE signal follow the same pattern as in Figures 4c 

and 4d. However, the fit to GRACE before 2007 is better than in the latter. 

Linear trends are very sensitive to the selected time period and individual values. While the de-seasonalized TWSA from 410 

Wg_gl fits reasonably well overall to GRACE observations (Fig. 4d), Wg_gl considerably overestimates the trend 

determined for the time period January 2003 to August 2016, if averaged over the four ensemble members, by about 30% 

(Table 3). Wg_std variants underestimate the positive contribution to OMC by about 50%. Thus, the TWSA trend computed 

by integrating GGM output into WaterGAP results in a better estimation of the GRACE trend than if glaciers are neglected. 

Assuming 70% deficit irrigation and utilizing GPCC precipitation, the simulated trend value of 1.05 mm SLE yr
-1

 is within 415 

the uncertainty bounds of the GRACE solutions (Table 3). The trend gets larger with optimal irrigation and CRU 

precipitation, which is mainly due to the larger TWSA values during the period 2003–2004 (Figure 4d). The absolute 

difference between the two irrigation variants (0.11 to 0.12 mm SLE yr
-1

) is in accordance with the absolute difference 

between the two precipitation forcings (0.11 to 0.13 mm SLE yr
-1

); this means that, over this period, the trend is equally 

affected by the choice of irrigation variant than by the choice of precipitation forcing. The GRACE ensemble range is 420 

approximately 5 times smaller than the range of the Wg_std and Wg_gl ensembles. This is partly due to the choice of the 

GRACE solutions; although coming from different processing centers, they were all corrected using the same GIA model 

(Caron et al., 2018). The trend-spread owing to possible GIA models is reflected in the given standard uncertainty. The GIA 

model choice is the main contributor to uncertainty besides the GRACE degree-1 correction. 

Overall, we infer that integration of glacier model output into WaterGAP results in a better fit to GRACE in terms of linear 425 

trend, NSE and r for de-seasonalized time series while simulated seasonality is barely improved. Seasonal variations of mean 

global TWSA are simulated very well with Wg_gl compared to GRACE observations, inter-annual variability is captured to 

a certain extent, and the linear trend is overestimated. The overall fit of the monthly time series of global mean TWSA to 

GRACE (Figure 3a) is remarkably good (NSE = 0.87, r = 0.95). Together with the positive evaluation of the glacier model 

results, this gives us confidence that our modelling approach can be used to reconstruct TWSA and thus the water mass 430 

transfer from the continents to the oceans for the time period before GRACE. 
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Table 3: Linear TWSA trends from GRACE observations and from WaterGAP2.2d, January 2003 to August 2016. Model estimates 

correspond to individual solutions of standard WaterGAP (Wg_std) and integrated WaterGAP (Wg_gl) ensembles. GRACE-derived 435 

estimates correspond to SH solutions from four processing centres (CSR, GFZ, ITSG and JPL). Trends were calculated according to the 

linear least squares regression method. Negative trends (mass loss) over the continents, expressed in millimetres of land water height (mm 

LWH, relative to the global continental area without the ice sheets 132.3·106 km2), translate to positive trends (mass gain) over the oceans, 

expressed in millimetres of sea level equivalent (mm SLE, relative to the global ocean area 361.0·106 km2). 

 
Variant Trend Average of individual trends 

    mm LWH yr-1 mm SLE yr-1 mm LWH yr-1 mm SLE yr-1 

Wg_std ant_GPCC_irr70 -0.78 0.29 -1.12 0.41 

ant_GPCC_irr100 -1.12 0.41 

ant_CRU_irr70 -1.13 0.42 

ant_CRU_irr100 -1.45 0.53 

Wg_gl ant_GPCC_irr70 -2.86 1.05 -3.18 1.17 

ant_GPCC_irr100 -3.19 1.17 

ant_CRU_irr70 -3.18 1.16 

ant_CRU_irr100 -3.50 1.28 

GRACE CSR_rl06sh -2.37 ± 0.55 0.87 ± 0.20 -2.37 ± 0.55 0.87 ± 0.20 

GFZ_rl06sh -2.39 ± 0.55 0.87 ± 0.20 

ITSG_2018 -2.29 ± 0.55 0.84 ± 0.20 

JPL_rl06sh -2.43 ± 0.55 0.89 ± 0.20 

 440 

5. Global water transfer from continents to oceans over the period 1948–2016 

Annual time series of global mean water storage anomalies over the period 1948–2016 were calculated by the four integrated 

WaterGAP in anthropogenic mode variants with different precipitation inputs and irrigation water assumptions (Figure 5a). 

The continents lost between 93–111 mm LWH to the oceans between 1948 and 2016, which is equivalent to an ocean water 

mass increase of 34–41 mm SLE. SLR is less pronounced in case of less than optimal irrigation in groundwater depletion 445 

areas (variant _irr70, see also Table 4). While the 2003–2016 trends are equally affected by the precipitation data set and the 

irrigation assumption (Table 3), the 1948–2016 trends are much more strongly affected by the irrigation assumption than the 

applied precipitation data set (Table 4). Continental water mass losses have been accelerating over time (see Table 5 and 

Table S2 in the supplementary material) so that the 2003–2016 trends are approximately 6 times larger than the 1948–1975 

trends. 450 
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Figure 5: Global annual TWSA and individual contributions, 1948 to 2016. (a) TWSA computed with four variants of integrated 

WaterGAP in anthropogenic mode (Table 1). (b) Disaggregation of TWSA into anomalies of land glacier water storage (LGWSA) and 

land water storage (LWSA), and of land water storage anomalies into anomalies of climate-driven land water storage (LWSAclim) and 

human-driven land water storage (LWSAhum); for each ensemble, the curve represents the ensemble mean and the shaded area around the 455 

curve represents the ensemble minimum and maximum values. Anomalies are relative to the year 1948 and given in millimetres of land 

water height (mm LWH). 

Table 4: Linear trends of contribution of TWSA to OMC, 1948 to 2016. Estimates were obtained with four variants of integrated 

WaterGAP (same variants as in Figure 5a). Positive trends translate to ocean mass gain, whereas negative trends translate to ocean mass 

loss. Estimates are given in millimetres of sea level equivalent per year (mm SLE yr-1). 460 

 Model variant Linear trend 

  mm SLE yr-1 

Wg_gl_ant_GPCC_irr70 0.44 

Wg_gl_ant_GPCC_irr100 0.53 

Wg_gl_ant_CRU_irr70 0.42 

Wg_gl_ant_CRU_irr100 0.50 
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5.1 Contributions of LGWSA, climate-driven LWSA and human-driven LWSA to TWSA 

Simulated TWSA (Figure 5a) was disaggregated into its individual components LGWSA, LWSAclim and LWSAhum (Figure 

5b) by using the results of the different Wg_gl model variants (Tables 1 and 2). Glacier mass loss is the dominant component 465 

of the TWSA mass budget (Figure 5b), with LGWSA accounting for 81% of the cumulated water mass loss from continents 

over 1948–2016. The overall contribution of LWSA, which is dominated by its human-driven component (Figure 5b), is also 

positive (19% of the cumulated water mass loss). Inter-annual variability of LWSA stems from its climate-driven component 

(Figure 5b). Trends of TWSA, LGWSA, LWSA, LWSAclim and LWSAhum show an acceleration of continental water mass 

loss over time (Table 5). However, note that LWSAclim and LWSAhum exhibit negative contributions to OMC over the period 470 

1948–1975, adding some water to the continents due to climate and human activities. 

5.2 Contribution of reservoirs and water abstraction to human-driven LWSA 

LWSAhum can be disaggregated into changes due to reservoir construction and operation (LWSAres) and changes due to 

human water abstraction (LWSAabs). Between 1948 and 2016, the continents gained approximately 22 mm LWH (i.e. 8 mm 

SLE) due to water impoundment in reservoirs, and lost between 40–57 mm LWH (i.e. 15–21 mm SLE) due to water 475 

abstraction for human water use, resulting in an overall positive contribution of LWSAhum to OMC (Figure 6).  

 
Figure 6: Global mean annual human-driven LWSA and individual contributions, 1948 to 2016. Human-driven LWSA (LWSAhum, as in 

Figure 5) are disaggregated into anomalies due to reservoir operation (LWSAres) and water abstraction (LWSAabs). Anomalies are relative 

to the year 1948 and given in millimetres of land water height (mm LWH). 480 

 

However, continental water mass gain due to LWSAres more than compensated mass losses due to LWSAabs before 1980, 

when intensive reservoir construction lead to a stronger increase of impounded water mass than afterwards (Figure 6). 

Trends of LWSAres show a deceleration of continental mass gain due to water impoundment in reservoirs over time, whereas 

trends of LWSAabs show an acceleration of continental mass loss due to water abstraction (Table 5). 485 
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Table 5: Linear trends of contribution of TWSA, LWSA, LWSAclim, LWSAhum, LWSAres, LWSAabs and individual water storage 

compartments to OMC over three periods (1948–1975, 1976–2002 and 2003–2016). Positive trends translate to ocean mass gain, whereas 

negative trends translate to ocean mass loss. Ensemble ranges are given in parentheses. Estimates are given in millimetres of sea level 

equivalent per year (mm SLE yr-1). 

Component Linear trend 

mm SLE yr-1 

1948–1975 1976–2002 2003–2016 

TWSA 0.18 0.58 1.18 

(0.13 to 0.23) (0.49 to 0.66) (1.06 to 1.30) 

LWSA -0.20 0.21 0.41 

(-0.25 to -0.15) (0.12 to 0.29) (0.29 to 0.52) 

LWSAclim -0.13 0.01 0.04 

(-0.15 to -0.10) (-0.02 to 0.04) (-0.03 to 0.10) 

LWSAhum -0.08 0.19 0.37 

(-0.10 to -0.05) (0.14 to 0.25) (0.30 to 0.45) 

LWSAres  

(= ReWSA) 

-0.21 -0.10 -0.02 

 (-0.11 to -0.10) (-0.03 to -0.02) 

LWSAabs 0.14 0.30 0.39 

(0.12 to 0.17) (0.25 to 0.35) (0.33 to 0.46) 

LGWSA 0.38 0.37 0.77 

CnWSA 0.00 0.00 0.00 

SnWSA -0.06 0.01 0.03 

SMWSA -0.01 0.01 -0.01 

 (0.00 to 0.02) (-0.03 to 0.00) 

GWSA 0.11 0.26 0.39 

(0.08 to 0.14) (0.21 to 0.32) (0.32 to 0.46) 

LaWSA -0.02 0.00 -0.01 

(-0.02 to -0.01)  (-0.01 to 0.00) 

WeWSA -0.01 0.01 -0.01 

(-0.01 to 0.00) (0.00 to 0.01) (-0.01 to 0.00) 

RiWSA 0.00 0.01 0.03 

(-0.01 to 0.01) (0.00 to 0.02) (-0.01 to 0.07) 

 490 

5.3 Contribution of individual water storage compartments to TWSA 

Among the nine water storage compartments in Wg_gl, largest absolute change over the period 1948–2016 is mass loss from 

glaciers, i.e. a decrease of LGWS by 30 mm SLE (Figure 7a). The second largest is groundwater depletion, with a decrease 

of 13–19 mm SLE depending on the irrigation assumption. The third largest (with opposite sign) is water impoundment in 
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reservoirs, which added 8 mm SLE to the continents. In the storages of SWB, there are only very small differences due to the 495 

irrigation variant. Apart from LGWS, GWS and ReWS, the rest of the water storage compartments have only a marginal 

contribution, with negative contributions from the river and wetland storages, and positive contributions from the soil, lake 

and snow storages (Figure 7b). Differences related to precipitation forcing, which are more visible in Figure 7b, exist in all 

storages except for the glacier storage, which is not affected by the different WaterGAP precipitation forcings as it is a direct 

input to WaterGAP. 500 

 

Figure 7: Global cumulated water storage change in individual water storage compartments, 1948 to 2016. Estimates were obtained with 

four variants of integrated WaterGAP in anthropogenic mode (Table 1). (a) Water storage (WS) change in glacier (LG), groundwater (G), 

aggregate of lake (La), river (Ri) and wetland (We), aggregate of snow (Sn), soil moisture (SM) and canopy (Cn), and reservoir (Re) 

compartments. (b) Water storage change in river, wetland, soil moisture, lake and snow storages. Canopy storage is not included because 505 

the cumulated change is in the order of 1·10-3 mm LWH. Estimates are given in millimetres of land water height (mm LWH) and of sea 

level equivalent (mm SLE). 

6. Discussion 

6.1 TWSA temporal components: seasonality and long-term variability 

6.1.1 Linear trend: comparison to independent estimates 510 

In terms of the linear trend of the ensemble mean, Wg_gl overestimates the positive contribution of TWSA to OMC by 30–

50% as compared to the GRACE TWSA trends from this study (Tables 3 and 6). However, if we assume 70% deficit 

irrigation in GWD regions and GPCC precipitation, the simulated trend is within the GRACE uncertainty bounds (Table 3). 

We consider this variant more likely because 1) GPCC is based on a much larger number of station records than CRU (see 

Figure 2 of Schneider et al., 2014) and 2) assuming that farmers in GWD areas have optimal irrigation conditions seems 515 

implausible (Döll et al., 2014). Despite this, we included this assumption in the design of the model variants as an upper-

bound of GWD (Figure 7). GRACE estimates from other studies (Rietbroek et al., 2016; Reager et al., 2016; Blazquez et al., 

2018) suggest much smaller continental water mass losses to oceans (Table 6). Differences between GRACE-based TWSA 

trends from this study and from independent sources are of the same order of magnitude than differences between GRACE- 
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and model-based TWSA trends from this study. This suggests that GRACE-based TWSA trends are very sensitive to the 520 

multiple processing parameters applied to the GRACE Level-2 data (Blazquez et al., 2018). 

Table 6: Comparison between trends of TWSA, LGWSA, LWSA, LWSAhum and LWSAclim from this study and literature. TWSA trends 

from this study were derived from GRACE observations and from integrated WaterGAP (Wg_gl) in anthropogenic mode. LWSA trends 

were obtained by subtracting LGWSA trends from TWSA trends based on either GRACE or Wg_gl. LWSAclim trends were obtained by 

subtracting LWSAhum based on Wg_gl from LWSA based on either GRACE or Wg_gl. Positive trends translate to ocean mass gain, 525 

whereas negative trends translate to ocean mass loss. Estimates are given in millimetres of sea level equivalent per year (mm SLE yr-1). 

Study Method Time 

period 

TWSA LGWSA LWSA LWSAhum LWSAclim 

Dieng et al. 

(2017) 

I + M Jan 1993–

Dec 2015 

1.00                             

(0.91c) 

0.76 ± 0.08 

(0.62 ± 0.03c) 

0.24 ± 0.09 

(0.29c) 

 0.12                  

(-0.05c) 

Jan 2004–

Dec 2015 

1.03                       

(0.81 ± 0.20b/1.19c) 

0.78 ± 0.07 

(0.76 ± 0.03c) 

0.25 ± 0.08 

(0.05b,c/0.43c) 

  

Rietbroek et 

al. (2016) 

G Apr 2002–

Jun 2014a 
0.09                      

(0.64 ± 0.20b/0.94c) 

0.38 ± 0.07 

(0.74 ± 0.03c) 

-0.29 ± 0.26      

(-0.10b,c/0.20c) 

  

Reager et al. 

(2016) 

G + I Apr 2002–

Nov 2014a 
0.32 ± 0.13          

(0.64 ± 0.20b/0.97c) 

0.65 ± 0.09 

(0.74 ± 0.03c) 

-0.33 ± 0.16      

(-0.10b,c/0.23c) 

 -0.71 ± 0.20     

(-0.41b,c/-0.09c) 

Blazquez et 

al. (2018) 

G Aug 2002–

Jun 2014a 
0.07 ± 0.12d        

(0.61 ± 0.20b/0.93c) 

    

Schrama et 

al. (2014) 

G Jan 2003–

Dec 2013 

 0.44 ± 0.03 

(0.75 ± 0.03c) 

   

Bamber et 

al. (2018) 

I Sep 2002–

Aug 2006a 
 0.48 ± 0.09 

(0.71 ± 0.03c) 

   

Sep 2007–

Aug 2011 

 0.55 ± 0.08 

(0.73 ± 0.03c) 

   

Zemp et al. 

(2019) 

O Sep 2006–

Aug 2016 

 0.56 ± 0.04 

(0.80 ± 0.03c) 

   

Dieng et al. 

(2015) 

B Jan 2003–

Dec 2013 

  0.30 ± 0.18      

(-0.11b,c/0.18c) 

  

Wada et al. 

(2016) 

I Jan 1993–

Dec 2010 

   0.12 ± 0.04 

(0.31c) 

 

IPCC AR5 I Jan 1993–

Dec 2011 

      0.38 ± 0.12 

(0.31c) 

  

a Only three (CSR_rl06sh, ITSG_2018 and JPL_rl06sh) out of four GRACE solutions where considered (GFZ_rl06sh was excluded 

because of lack of values in 2002). b Trends based on GRACE data sets used in this study. c Trends based on modelled data sets (Wg_gl) 

used in this study. d Uncertainty estimates in the source paper are expressed in 1.65σ. Here, they are expressed in 1σ. I: multiple 

independent estimates; M: modelling; G: GRACE data; O: observations; B: global water mass budget. 530 

The overestimation of the TWSA positive contribution by Wg_gl may arise from uncertainty in both the LWSA and 

LGWSA components. There is a rather good agreement between the LGWSA trend from GGM, on the one hand, and from 

Dieng et al. (2017) and Reager et al. (2016), on the other hand. The agreement to Dieng et al. (2017) is not surprising, since 

their estimates were obtained by averaging three data sets, including a GGM data set used in Marzeion et al. (2015) (update 
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from Marzeion et al., 2012). Nevertheless, according to the GRACE-based estimates from Rietbroek et al. (2016) and 535 

Schrama et al. (2014), GGM overestimates the LGWSA contribution. The more recent non-GRACE-based estimates from 

Bamber et al. (2018) and Zemp et al. (2019) are in better agreement with the estimates from GGM, even though still too 

small in comparison (Table 6). 

The discrepancy between GRACE- and model-based TWSA trends from this study is also reflected in the LWSA trends. If 

LGWSA is subtracted from TWSA of Wg_gl, a mass loss on land is computed, while a (small) mass gain on land results if 540 

GRACE-based TWSA is used instead (Table 6). This can be related to the findings of Scanlon et al. (2018), which show that 

LWSA trends summed over 183 basins worldwide (~63% of global continental area excluding the ice sheets) are positive 

(mass gain on land) for GRACE but negative (mass loss on land) for models. The LWSA trends from Rietbroek et al. (2016) 

and Reager et al. (2016) suggest a higher water mass gain on continents than our GRACE-based trends (Table 6), reflecting 

the discrepancy in TWSA trends, which is not compensated by smaller glacier mass losses in these two studies (Table 6). On 545 

the other hand, it is noteworthy that our model-based LWSA trends are in good agreement with other non-GRACE-based 

trends, namely the ones from Dieng et al. (2015) and Dieng et al. (2017) (Table 6). 

The presumed overestimation of the LWSA positive contribution to OMC by Wg_gl may reflect an overestimation of the 

LWSAhum positive contribution and/or an underestimation of the LWSAclim negative contribution. Our LWSAhum trend is in 

good agreement with the one reported by the IPCC AR5, but overestimated according to the trend of Wada et al. (2016) 550 

(Table 6). Wada et al. (2016) argued that the LWSAhum positive contribution of the IPCC AR5 is probably overestimated by 

a factor of 3, and that this is partly due to the fact that the IPCC AR5 assumes that 100% of GWD ends up in the ocean, 

whereas their study shows that only 80% of GWD ends up in the ocean. We estimate a GWD trend of 0.39 mm SLE yr
-1

 

over 2003–2016 (Table 5), which is within the uncertainty bounds of the trend reported by Wada et al. (2016), 0.30 ± 0.10 

mm SLE yr
-1

 over 2002–2014, even if slightly higher. Concerning the LWSAclim component, Dieng et al. (2017) computed a 555 

positive contribution, whereas Wg_gl computed a negative contribution, suggesting differences between models. Moreover, 

the trend from Reager et al. (2016) suggests that Wg_gl underestimates continental water mass gain due to climate 

variability; by assuming GRACE-based TWSA, we obtain a LWSAclim trend closer to the estimate of Reager et al. (2016) 

(Table 6). 

6.1.2 Seasonality 560 

The small discrepancy between GRACE and Wg_gl in terms of TWSA seasonality (Figure 4b) is partly due to differences in 

seasonal amplitude. For instance, some years (2006, 2009 and 2011) show smaller simulated seasonal amplitude than what is 

observed by GRACE. Although we did not investigate this matter at regional scale, we speculate that this might be due to a 

systematic underestimation of seasonal amplitude in tropical basins by WaterGAP, where the seasonal signal is strongest, 

resulting from insufficient storage capacity (Scanlon et al., 2019). At global scale, however, underestimation in tropical 565 

basins might be compensated by overestimation in other types of basin. 
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6.1.3 Residual: long-term non-linear variability 

The most prominent discrepancies between global mean monthly TWSA from GRACE and Wg_gl are observed in the 

residual signal (Figure 4f), which contains the inter-annual variability. The inter-annual variability comes almost completely 

from the LWSA component (Figures 4e and 4f), and more specifically from its climate-driven component (LWSAclim in 570 

Figure 5b) at global scale. Cazenave (2018) pointed out that this is arguably the most difficult component in the land water 

budget to quantify. Humphrey et al. (2016) show that inter-annual anomalies in the GRACE signal can be correlated to 

anomalies in precipitation (positive correlation) and near-surface temperature (negative correlation); we discuss the relation 

between precipitation anomalies and inter-annual variability in Section 6.3.1. Furthermore, inter-annual fluctuations in LWS 

can reflect the occurrence of atmospheric circulation patterns, like the El Niño Southern Oscillation (Cazenave and Llovel, 575 

2010; Llovel et al., 2011; Cazenave et al., 2012). The discrepancy between the residual signal in GRACE and Wg_gl is more 

prominent in some years (Figure 4f). In particular, we can identify the intense La Niña event of 2010/2011 (positive peak 

indicating a water mass gain on land) and the intense El Niño event of 2015/2016 (negative peak indicating a water mass 

loss on land). If we rely on the validity of the GRACE time series, despite the significant gaps in the data for both events, 

then it can be inferred that, even though Wg_gl reproduces the events to some extent, it underestimates their intensity. We 580 

discuss further the relation between the El Niño Southern Oscillation (ENSO) occurrence and inter-annual variability in 

Section 6.3.2. 

6.2 Limitations of study 

Simulated global TWSA is the result of aggregating water storage change estimates corresponding to nine individual water 

storage compartments and 64432 grid cells. There is uncertainty in each single estimate (due to uncertain climate input, 585 

assumptions related to water use, model parameters etc.). However, errors in individual storage compartments and at smaller 

spatial scales may average out once aggregated at global scale. In this section, we discuss about the limitations of our 

reconstruction of time series of global TWSA and thus mass transfer from continents to oceans. Limitations in our approach 

are related to the integration of glacier data as an input to WaterGAP, to the global models (GGM and WaterGAP) used to 

compute LGWSA and LWSA and to missing components that were not accounted for in this study. 590 

6.2.1 Glacier data integration approach 

The glacier data integration significantly improved the simulation of the global mean TWSA linear trend by WaterGAP 

(Figure 4c and 4d). However, this approach does not give appreciably different results from simply adding the separately 

estimated LGWSA and LWSA components (hereafter the “addition approach”) at global scale (Figure 3). According to data 

used in this study, we estimate that glaciers cover 0.38% of the global continental area (excluding the ice sheets), which is 595 

smaller than the estimate of Bamber et al. (2018), amounting to 0.50%. However, the area effectively accounted for by 

integrated WaterGAP amounts to 0.34% (~11% of global glacier area is neglected, see Section 3.3), resulting in a reduction 

of its global land area ranging from 0.39% in 1948 to 0.34% in 2016. Thus, it is not strange that the reduction of the land 
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area had an insignificant effect at global scale. We speculate that, at basin scale, the glacier data integration approach might 

show significantly different results from the addition approach. 600 

Moreover, our approach has limitations regarding the fate of the internally calculated glacier runoff. One of the sources of 

uncertainty related to the contribution of glaciers to SLR is the interception of glacier runoff by land; it is still vastly 

assumed that glacier runoff flows directly to the ocean, with no delay or interception by water storage compartments (Church 

et al., 2013). In our approach, we assume that glacier runoff is intercepted by surface storages, but not by sub-surface (soil 

and groundwater) storages. We made this assumption because we have no means of assessing how much glacier runoff is 605 

intercepted by sub-surface storages at global scale. 

6.2.2 Global modelling of LGWSA 

Previous studies (Marzeion et al., 2015; Slangen et al., 2017) have shown agreement between GGM and other global glacier 

models. For instance, according to Marzeion et al. (2015), the reconstruction of global glacier mass change during the 

twentieth century by GGM is consistent with the ones obtained from other methods of reconstruction (see their Figure 1). 610 

However, note that this might simply mean that the methods are consistently wrong. In addition, using an extrapolation of 

glaciological and geodetic observations, Zemp et al. (2019) estimate that glaciers (outside the ice sheets) contributed 23 ± 14 

mm SLE to global-mean SLR from 1961 to 2016. We estimate a contribution of 25 mm SLE with GGM over the same 

period, which is remarkably consistent with the estimate from Zemp et al. (2019). Furthermore, our evaluation of GGM 

performance (Section 4.1) shows that this model can reproduce well the observed mean seasonality of winter accumulation 615 

and summer ablation; this is not always the case for global glacier models (Fig.4, Hirabayashi et al., 2010). 

Despite the fact that we consider GGM estimates to be state-of-the-art, they are subject to multiple sources of uncertainty. 

Input data (climate forcing and glacier outlines), simplification of physics in the model, observation data used for calibration 

and the calibration itself are among the main sources. GGM includes uncertainty estimates related to annual glacier mass 

change time series. However, we did not include these uncertainty estimates in our assessment (we only included the trend 620 

uncertainty, which corresponds to a 1σ standard uncertainty) for consistency reasons (i.e. most data sets used for the 

assessment have unknown uncertainties). 

6.2.3 Global modelling of LWSA 

Uncertainty in WaterGAP estimates is related to both the LWSAhum and LWSAclim components. Modelling of GWD, which 

is both related to climate variability and human water use, is of key importance, as global water storage trends computed 625 

with WaterGAP are particularly sensitive to these variations (Müller Schmied et al., 2014). Global GWD is highly linked to 

irrigation groundwater abstraction. The estimation of gross and net irrigation groundwater abstraction is not a trivial task, as 

it relies mainly on statistical data and assumptions, and depends on climate input (Döll et al., 2016). In the past, the rate of 

global and regional GWD has been subject to much debate (Döll et al., 2014; Wada et al., 2017). According to Wada et al. 
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(2017), most studies likely overestimated the cumulative contribution of GWD to global SLR during the twentieth and early 630 

twenty-first century. Our GWD estimates are very likely overestimated under optimal irrigation (Döll et al., 2014). 

Modelling reservoir storage and operation is also subject to multiple sources of uncertainty (e.g. quality of reservoir data 

base, algorithms and assumptions used in model). In the present study, we did not include model variants differing from one 

another in the way reservoirs are handled. Wada et al. (2017) estimated a global reservoir storage capacity of 7968 km³ (~22 

mm SLE) until 2014. WaterGAP has a global reservoir storage capacity of 5764 km³ (~16 mm SLE), as it only simulates the 635 

largest 1082 reservoirs (Section 2.1.1). Furthermore, by assuming that on average 85% of the reservoir capacity is used and 

taking into account seepage (i.e. adding additional water that seeps underground), Wada et al. (2017) estimated a potential 

total water impoundment in reservoirs of ~29 mm SLE. Upon application of the reservoir operation algorithm implemented 

in WaterGAP, we estimate an actual total water impoundment of ~10 mm SLE, which corresponds to roughly 63% of the 

global reservoir capacity. Our estimate of total water impoundment might be underestimated because WaterGAP only 640 

simulates the largest reservoirs and because it does not account for seepage. On the other hand, Wada et al. (2017) might 

overestimate the additional water due to seepage, as well as the fraction of the design capacity that is in reality filled (85% 

according to their assumption). 

LWSAclim is largely affected by uncertain climate input data. As stated by Döll et al. (2016), this remains one of the main 

challenges in the development and application of GHMs. Precipitation and radiation data have been identified as strong 645 

drivers of water storage change (Müller Schmied et al., 2014; Müller Schmied et al., 2016; Humphrey et al., 2016). Our 

assessment accounts for part of the uncertainty related to precipitation input data by considering two different climate 

forcings (WFDEI-GPCC and WFDEI-CRU). We believe that WFDEI-GPCC is likely to be more reliable than WFDEI-CRU 

because 1) the monthly time series of gridded precipitation from GPCC used to bias-adjust WFDEI-GPCC are based on 

more observation stations (Müller Schmied et al., 2016) and 2) GRACE-derived trends of TWSA in 186 large river basins 650 

correlate much more with trends computed by WaterGAP if GPCC precipitation is used (Scanlon et al., 2018). Despite this, 

both forcings are not well suited for trend analysis as a consequence of the bias correction, which significantly affects trends 

of climatic variables such as temperature and precipitation (Hempel et al., 2013; Weedon et al., 2014). TWSA trends 

simulated by WaterGAP are most likely affected by this caveat regarding the climate forcing. Moreover, note that, given the 

complex interactions and feedbacks in the climate system, we could not, unlike for LWSAhum, isolate the different 655 

components of LWSAclim. Nevertheless, we discuss about some of its main drivers in Section 6.3. 

6.2.4 Missing components 

The Caspian Sea (largest endorheic lake worldwide), which was one of the largest contributors to global lake water storage 

loss during the twentieth century (Milly et al., 2010), is missing from our assessment because the model grid, based on the 

WATCH-CRU land–sea mask, does not include it. The contribution of this endorheic lake to SLR has been estimated to 660 

0.109 ± 0.004 mm SLE yr
-1

 during the period 2002–2014 (Wada et al., 2017) and 0.114 ± 0.013 mm SLE yr
-1

 during the 
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period April 2002 to March 2016 (Wang et al., 2018). Moreover, WaterGAP does not account for land cover change. This 

means that the impact of anthropogenic-induced phenomena such as deforestation is neglected. Wada et al. (2017) estimated 

that net global deforestation, through runoff increase and water release from oxidation and plant storage, contributed ~0.035 

mm SLE yr
-1

 to SLR over 2002–2014. 665 

6.3 Analysis of climate-driven LWSA 

6.3.1 Correlation to precipitation 

We found a correlation of r = 0.63 between GPCC precipitation anomalies and LWSAclim based on GPCC precipitation, and 

of r = 0.72 with CRU precipitation (Figure 8). Furthermore, we found a correlation of r = 0.87 by comparing the difference 

between the two precipitation time series to the difference between the two LWSAclim time series. From these results, we 670 

deduce that precipitation is most likely the main driver of LWSAclim at global scale. By comparing global precipitation 

anomalies from CRU TS3.10 and GPCC v5, Harris et al. (2014) identified a correlation of r = 0.88 over 1951–2009 (see 

their Table II and Figure 10). We identified a correlation of r = 0.86 over 1948–2016 between the precipitation time series 

used in this study. This is noteworthy, given the fact that GPCC is based on a much larger number of station records than 

CRU. Note that the high correlation between the two data sets means that our ensemble underestimates the uncertainty in 675 

global TWSA due to precipitation input data. 

 
Figure 8: Correlation between global annual climate-driven LWSA and precipitation anomaly, 1948 to 2016. Precipitation (rainfall plus 

snowfall) anomalies correspond to the WFDEI-GPCC and WFDEI-CRU forcings used in this study (Section 2.1.1). Climate-driven LWSA 

(LWSAclim[WFDEI-GPCC] and LWSAclim[WFDEI-CRU]) were obtained with integrated WaterGAP in naturalized mode (see Table 2). 680 

Anomalies are relative to the year 1948 and given in millimetres of land water height (mm LWH). 
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6.3.2 Relation to ENSO 

Previous studies have shown that LWSAclim is affected by internal multi-year climate variability such as ENSO (Llovel et al., 685 

2011; Cazenave et al., 2012; Boening et al., 2012). We looked at the relation between the residual signal (i.e. non-linear 

inter-annual variability) in TWSA (Figure 9a) and short-term natural climate variability related to ENSO and expressed as 

Multivariate ENSO Index (MEI) version 2 intensities (Wolter and Timlin, 1993; Wolter and Timlin, 1998) over 1980–2016 

(Figure 9b). The period was chosen according to the availability of MEI data. The MEI, which combines both oceanic and 

atmospheric variables, is an indicator of ENSO intensity. Note that, during El Niño phases, TWS tends to decrease; this is 690 

due to a rainfall deficit over the continents (mostly the tropics). During La Niña phases, the opposite is observed. Based on 

MEI intensities, we identified four major La Niña events (MEI < 1) and five major El Niño events (MEI > 1) during 1980 to 

2016. According to our results, part of the signature in simulated TWSA inter-annual variability reflects ENSO-driven 

climate variability. We can observe a continental water storage decrease during El Niño phases, as opposed to a continental 

water storage increase during La Niña phases. Differences due to precipitation input data are significant. The impact of the 695 

La Niña event of 1988/1989 is more prominent with GPCC precipitation; this is related to higher precipitation anomalies (i.e. 

wetter conditions) with GPCC (Figure 8). The opposite is observed during the La Niña event of 1998/2000, and can be 

explained in the same way. Moreover, note that there is no difference between the two irrigation variants, because LWSAhum 

mainly affects long-term linear variability (Figures 5b and 6). By studying the GRACE record at regional scale, Wang et al. 

(2018) showed that the sensitivity to ENSO modulations is more prominent in the global exorheic (i.e. draining into the 700 

ocean) system, as opposed to the global endorheic (i.e. landlocked) system (see their Figure 2). Within the exorheic system, 

tropical basins (particularly the Amazon) are more sensitive to these modulations (Llovel et al., 2011).  
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Figure 9: Relation between global monthly TWSA and ENSO, January 1980 to December 2016. (a) Residual TWSA (non-linear inter-

annual variability) computed with four variants of integrated WaterGAP (Wg_gl) in anthropogenic mode (Table 1). Anomalies are relative 705 

to the mean over January 1990 to December 2010 and given in millimetres of land water height (mm LWH). (b) Intensities in Multivariate 

ENSO Index (MEI) version 2 (produced by NOAA). Positive MEI values indicate El Niño and negative values indicate La Niña phases. El 

Niño (red) and La Niña (blue) phases are highlighted in plot (a) whenever the MEI gets larger than 1 or smaller than -1, respectively. Note 

the reversed vertical axis in (b). 

7. Conclusions 710 

In order to quantify water transfers between continents and oceans over the period 1948 to 2016, we integrated the output of 

the state-of-the-art global glacier model GGM into the state-of-the-art global hydrological model WaterGAP. This resulted in 

a non-standard version of WaterGAP that is able to simulate the impact of glacier mass changes and runoff on continental 

water flows and storages in a consistent manner, and thus accounts for the variations in all continental water storage 

compartments. In order to take into account major hydrological modelling uncertainties, the integrated WaterGAP model 715 

was run under different assumptions of irrigation water use and with different precipitation input data sets. Time series of 

global mean monthly TWSA simulated with this ensemble were evaluated by comparing them to estimates from an 

ensemble of GRACE solutions for the time period January 2003 to August 2016. A remarkable agreement between observed 

and modelled global mean monthly TWSA time series was found, with a high agreement with respect to seasonality and a 
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likely small overestimation of the water storage decline. We found no significant differences for global mean TWSA 720 

between our integrated modelling approach and simply adding the independently obtained LGWSA and LWSA components.  

According to our model-based reconstruction, we conclude that continental water mass loss resulted in an ocean mass gain 

equivalent to 34–41 mm SLE during 1948–2016. Continents (including glaciers) lost water at an accelerated rate over time, 

with a contribution to OMC of 0.18 mm SLE yr
-1

 over 1948–1975, 0.58 mm SLE yr
-1

 over 1976–2002 and 1.18 mm SLE yr
-1

 

over 2003–2016 (Table 5). Global glacier mass loss accounted for 81% of the cumulated mass loss over 1948–2016, while 725 

the remaining 19% was lost from other continental water storage compartments (LWS). Changes in LWS over 1948–2016 

were dominated by the impact of direct human interventions, namely water abstractions and impoundment of water in 

reservoirs. LWS mass loss from water abstractions (15–21 mm SLE), which showed an acceleration over time, offset LWS 

mass gain from reservoir water impoundment (8 mm SLE), which showed a deceleration over time. GWD (13–19 mm SLE) 

is strongly linked to water abstractions for irrigation purposes. Climate-driven variability in LWS is highly correlated to 730 

precipitation variations and is also influenced by multi-year modulations related to ENSO. 

Significant uncertainty in our assessment arises from the simulation of human-driven LWS changes. Modelling of GWD, 

which is highly sensitive to irrigation water use assumptions, is particularly challenging. Furthermore, simulated climate-

driven LWS changes are affected by uncertainty in the climate input data. Despite the limitations of our model-based 

approach and the remaining challenges, our assessment gives interesting insights on the main individual mass components 735 

and drivers of global water transfers from continents to oceans, as well as on possible routes for model improvement. More 

research is required to better constrain the simulation of human water use in GHMs. Finally, future research should go 

beyond the global scale by identifying the main regions contributing to water transfers between continents and oceans.  
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